
A study on the overhead of
memory-tagging in compression

libraries
Edouard Michelin

Memory-unsafe languages are still part of our lives

Linux, Chromium, Firefox, Nginx, and Git are all written in memory-unsafe languages (C, C++)

Importance of memory vulnerabilities

➔ ~70% of the vulnerabilities Microsoft assigns a CVE each year are memory safety issues

Similar results were found by Google for Chromium and Android in 2018 and 2019

➔ Consequences can be devastating if not contained (e.g., data corruption)

Possible mitigation strategies

➔ Sandboxing, isolating components from each other at the process level
◆ Problem: costly, sometimes too coarse-grained

➔ Intra-process memory isolation (mprotect(), Intel MPK)
➔ What can we protect? What can we not protect? Example of

CVE-2018-25032 (memory corruption when deflating) and a synthetic
one

Intel MPK (or PKU)

Relatively new (2017) → still needs to be studied
We will focus on its impact on performance

Introduction

Microsoft Security Response Center (MSRC) — A proactive approach to more secure code

2

The mprotect() way

Granularity = 1 page
System call for every access restriction modification
➔ inefficient when called multiple times

The MPK way

Memory-Tagging technique:
➔ Tag granularity = 1 page
➔ Tag size = 4 bits (→ 16 keys)
➔ Access restrictions set with PKRU register

Background

mprotect() vs MPK

➔ MPK is thread-local
➔ Number of syscalls with mprotect() -way is linear in the number of permission change, MPK-way is constant

3

Access-Control Matrix

Identifying the regions
➔ Zlib needs access to a structure

containing the input and other meta-data
for its operations (called z_stream)
◆ read-only for some fields (e.g., input

buffer)
◆ read-write for some others (e.g., output

buffer)
◆ or everything in SHARED → the whole

structure in read-write
➔ z_stream is allocated by the main

application
➔ SAFE ideally contains everything else but

can also be only the data chosen by the
developer

0403

0201

Two memory regions
1. SAFE — Used by the main application

2. SHARED — Used mainly by Zlib

ZMP

Design
Design & Implementation

SAFE SHARED

Main app RW RW

Zlib R or - RW

➔ Wraps zlib APIs
➔ Locks SAFE before entering zlib, unlocks

when returning from zlib
➔ Must offer allocation functions for the

SAFE region
➔ One version with mprotect() , one with

MPK

4

Multi-threaded applications
➔ mprotect() is process-wide

◆ If thread A enters zlib (SAFE is locked) then thread B can no longer access SAFE

Time
➔ ZMP provides intra-process heap-based memory isolation, stack is not covered

➔ ZMP’s custom allocator implementation is very primitive, deallocator has no effect

Design & Implementation
Issues and limitations

5

Limitations
➔ A vulnerability in zlib will not be detected by ZMP (e.g., CVE-2018-25032), the purpose of the design is to contain it

// main.c
int main()
{
 char *private_data = zmp_safe_alloc(100);
 z_streamp stream = malloc(sizeof(z_stream));
 // …
 int result = inflate(stream, Z_FINISH);
 // memory bug in inflate that can be used
 // to corrupt private_data
 // …
 return 0;
}

// zlib/inflate.c
int inflate()
{
 // …
 // put = output, copy = size to copy
 // put has been overwritten and now
 // points to private_data
 memcpy(put, next, copy);
 // crashes the application as private_data
 // is in locked SAFE region
}

ZMP
Allocations

➔ void *zmp_safe_alloc(size_t size)
→ allocates memory to the safe heap
→ if MPK: tags the allocated pages

➔ void zmp_safe_free(void *pointer)
→ frees memory allocated on the safe heap
→ currently has no actual effect

➔ SHARED allocations use standard library (i.e.,
malloc() , free()) as no restrictions will be
applied

Wrappers (interaction type 2)
➔ calls to zlib are replaced by their wrappers
➔ have the same header as the original zlib

functions (except for the name)
➔ manage SAFE region permission restrictions

Design & Implementation
Implementation

// wrapper for int zlib_api(void *param)

int zmp_zlib_api(void *param)
{
 zmp_mem_lock(); // locks SAFE
 int result = zlib_api(param);
 zmp_mem_release(); // unlocks SAFE

 return result;
}

ZMP heap (interaction type 1)

➔ mmap()-ed blocks → granularity of a block = 1
page

➔ blocks are contiguous, data are in addresses
[base_address, base_address +
used]

struct zmp_heap {
 void *base_address;
 size_t size; // soft limit
 size_t used; // hard limit
 int protection_key; // MPK only
}

Locking mechanism differs between MPK and
mprotect() version:
➔ mprotect()

mprotect([safe.base_addr, safe.base_addr
+ safe.used], PERM)

➔ MPK
pkey_set(safe.protection_key, PERM)

6

Zlib usage
1. Enters ZMP’s wrapper
2. SAFE memory locked
3. Zlib original function is called
4. SAFE memory unlocked
5. Returns result

Main()
1. Main program starts
2. Standard allocations are replaced by ZMP’s safe allocator
3. Zlib state structure is allocated in the SHARED region alongside the input

and output buffers

ZMP init
1. Initialize SAFE heap

If MPK →
a. needs to allocate a protection key

with the pkey_alloc() syscall
b. store the key in the

protection_key field
2. Loads zlib APIs (greedily)

Design & Implementation
Program flow

1 32

7

Minizip (minizip+miniunz)

➔ Small, zip and unzip tool
➔ Lives around zlib by construction → easier to perceive raw impact of ZMP
➔ Splits the input file in smaller chunks, compress/decompress the file chunk by chunk
➔ Program was modified:

◆ malloc() → zmp_safe_alloc() except for the output buffer
◆ Input buffer is in the SAFE region (here when locked, SAFE is read-only)
◆ zlib state structure was allocated on the stack → allocated on the heap (SHARED region)

What can we test?

➔ Bigger input file → More chunks → More interactions with zlib → More domain switches
➔ Bigger safe region → More pages to lock/unlock
➔ Behavior of ZMP with CVE-2018-25032 and the synthetic example

Evaluation
Evaluation setup

Test suite

➔ perf stat as a testing tool — 100 rounds per test
➔ Run the following test suite:

a. Remove the generated archive (test.zip)
b. Zip the input (a file named readme.txt), this generates test.zip
c. Rename the input (to readme.old)
d. Unzip test.zip , this generates readme.txt

8

Total elapsed time
➔ Reference version less performant (in user space)

→ implementation changes (stack vs heap, malloc() vs mmap())
➔ Noticeable impact when total elapsed time is small (<3ms), on

avg. ~4-5% (in user space only)
→ due to ZMP’s init. having a higher weight

➔ overhead of mprotect() over MPK: 0.5% for 32kB, 10.6%
for 100MB, and 11.3% for 1GB

Evaluation
Results

Impact of a bigger SAFE region (for a 100MB input)
➔ No effect on MPK
➔ 13% overhead for mprotect() in the assessed range

Avg runtimes of the reference app., the mprotect and the MPK versions with input size of 100MB and 1GB

Avg time in kernel space for the ref. app., the mprotect and the MPK versions with input size of 100MB and 1GB

Average runtimes for mprotect()
and MPK with increasing allocation
size in the SAFE region, and a
100MB input.

Memory metrics (100MB input)
Minizip Miniunz

SAFE 5.9% 28.25%

SHARED 94.1% 71.25%

TOTAL 354,648 B 67,224 B

Time in kernel space
32kB
➔ MPK presents no overhead
➔ mprotect() has a 4.1% overhead

100MB and 1GB
➔ MPK presents no overhead
➔ mprotect() introduces a 59.3% overhead

9

CVE-2018-25032

➔ Allows for memory corruption during deflation
➔ Corrupts the output archive
➔ Caught by AddressSanitizer
➔ Not detected by ZMP as in zlib
➔ If used to craft a more advanced attack which spreads to the MAIN region, could be detected

Theoretical example

Evaluation

10

CVE-2018-25032 and a theoretical example

// main.c
int main()
{
 char *private_data = zmp_safe_alloc(100);
 z_streamp stream = malloc(sizeof(z_stream));
 // …
 int result = inflate(stream, Z_FINISH);
 // memory bug in inflate that can be used
 // to corrupt private_data
 // …
 return 0;
}

// zlib/inflate.c
int inflate()
{
 // …
 // put = output, copy = size to copy
 // put has been overwritten and now
 // points to private_data
 memcpy(put, next, copy);
 // crashes the application as private_data
 // is in locked SAFE region
}

Memory isolation with mprotect()

➔ Proven technique
➔ Non-negligible performance overhead
➔ Not very scalable

With MPK

➔ Highly scalable
◆ In terms of number of pages to manage (size of SAFE)
◆ In terms of the interactivity between zlib and the main application

➔ Negligible performance overhead in most scenarios

Portability of ZMP

➔ Easily portable to other compression libraries (e.g., ZStd)

Future Work

➔ Stack isolation
➔ More advanced memory allocator
➔ Large scale application as a test case
➔ A more general library (standalone or improve already existing libraries)

Discussion & Conclusion

11

➔ Process’s memory split into 2 regions, SAFE and SHARED

➔ When zlib is being used, the SAFE region is locked (either Read-Only or No-Access) in one of two fashions (mprotect() or MPK)

➔ ZMP does not protect zlib, it detects illegal accesses to the SAFE region that could result from vulnerabilities in zlib

➔ mprotect() cannot be used in a scalable implementation of intra-process memory isolation

➔ MPK is a very efficient (performance-wise) way of implementing page-based permission restrictions

◆ Negligible performance overhead in most scenarios

➔ Memory-tagging (particularly MPK in our case) is a promising opportunity to detect memory-related vulnerabilities

➔ Albeit security was not a main concern in this project, it is an important factor to take into consideration

➔ The result of this project can serve as a foundation for further exploration and optimization

Summary

12

